Using the genetic algorithm to build optimal neural networks for fault-prone module detection
نویسندگان
چکیده
The genetic algorithm is applied to developing optimal or near optimal backpropagation neural networks for fault{prone/not{fault{prone classiication of software modules. The algorithm considers each network in a population of neural networks as a potential solution to the optimal classiication problem. Variables governing the learning and other parameters and network architecture are represented as substrings (genes) in a machine{level bit string (chromosome). When the population undergoes simulated evolution using genetic operators | selection based on a tness function, crossover, and mutation | the average performance increases in successive generations. We found that, on the same data, compared with the best manually developed networks, evolved networks produced improved classiications in considerably less time, with no human eeort, and with greater conndence in their optimality or near optimality. Strategies for devising a tness function speciic to the problem are explored and discussed .
منابع مشابه
FDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملHardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm
Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...
متن کامل